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Abstract
We prove that the Bohmian arrival time of the one-dimensional Schrödinger
evolution violates the quadratic form structure on which Kijowski’s axiomatic
treatment of arrival times is based. Within Kijowski’s framework, for a free
right moving wave packet �, the various notions of arrival time (at a fixed point
x on the real line) all yield the same average arrival time tKij

(�). We derive the
inequality tB(�) � tKij

(�) relating the average Bohmian arrival time to that
of Kijowksi. We prove that tB(�) < tKij

(�) if and only if � leads to position
probability backflow through x.

PACS number: 03.65.Tb

1. Introduction

Let a ready particle detector be exposed to a propagating one-particle wavefunction. What
is the probability distribution of the time when the detector clicks? Even in the simplest
case of a free one-dimensional (1D) Schrödinger wavefunction, the proposed answers to
this question for an ‘intrinsic, free arrival time distribution’ remain controversial; see, e.g.,
the introduction in [1]. The problem arises from the fact that quantum mechanics provides
probability distributions only for the outcomes of measurements performed at a certain time t,
which has to be chosen by the observer. And no such choice shows up in the above situation.

Among the various notions of arrival time offered by standard quantum mechanics, the
most prominent one arises from the generalized resolution of the identity associated with the
arrival time operator of Aharonov and Bohm [2]. This operator’s density of arrival times also
belongs to a set of arrival time densities proposed by Kijowski [3] and it is unique within this
set insofar as it minimizes, for every wavefunction, the variance of arrival times. Kijowski
determined his set from a list of axiomatic properties that seem plausible within standard
quantum mechanics. A summary of these matters is given by Egusquiza et al in section 10
of [1].
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Bohmian mechanics extracts a probability space of particle trajectories from each solution
of a configuration space Schrödinger equation. This trajectory space seems a natural candidate
from which one can derive the intrinsic arrival time distribution of an arbitrary wavefunction.
One simply has to answer the following question for any t ∈ R: What is the probability
measure of the subset of trajectories which intersect the detector’s volume at any time s prior
to time t? Leavens seems to have made the first use of this idea [4]. For certain 1D scattering
wavefunctions ψt , he derived the position probability current Jx(ψt ) at point x to be identical
(up to normalization) with the conditional probability density for the arrival at point x at time t.
(The conditioning is made to the event that an arrival at x occurs at all times.) In the three-
dimensional (3D) case the Bohmian strategy has been outlined by Daumer, Dürr, Goldstein
and Zanghi in their contribution to [5] and in [6]. Later on, for the general 1D case Leavens
has argued that within Bohmian mechanics |Jx(ψt )| (up to normalization) is identical with the
conditional probability density for the arrival at point x at time t [7]. While Leavens’ argument
is correct under certain limited circumstances it is wrong in general. A cutoff procedure for
reentering trajectories is missing from |Jx(ψt )| [6, 8]. Instead of this, as has been shown
in [9], a more complicated expression, involving the current Jx(ψs) at all times s prior to t,
yields, within Bohmian mechanics, the conditional probability density for the arrival at point
x at time t.

In the present work we study the question whether the Bohmian arrival time density,
restricted to free 1D positive momentum wavefunctions, belongs to the set of arrival time
densities introduced axiomatically by Kijowski. We shall prove that it does not do so, since
already the basic quadratic form structure, which Kijowski assumes, is violated. No wonder
that the expectation values of arrival times according to Bohm and according to Kijowski
in general differ. We shall show that the Bohmian expectation value is less than or equal
to the one according to Kijowski. It is exactly for wavefunctions without position space
probability backflow through the arrival point x that the two expectation values coincide.
(A 1D positive momentum wavefunction whose position probability current at the arrival
point x takes negative values during a finite time interval is said to be a wavefunction with
backflow. For such a wavefunction, the detection probability on the half-line right of x is not
monotonically increasing from 0 to 1 as a function of time.)

This leads us to the question of measurability of Bohmian arrival times. As we
understand it, the main virtue of Bohmian mechanics with its introduction of a definite
position in configuration space is the fact that it provides the mathematical structure to
represent within quantum theory the empirical fact that individual systems have properties.
In this manner, Bohmian mechanics gets rid of the quantum measurement problem. But
it does so only if it is assumed that a system’s properties, which may encompass an
observer’s perception, are completely determined by its Bohmian configuration. (Unlike
wavefunctions, Bohmian positions are definite and unsplit.) Therefore it seems likely
that a detection event happens as soon as a sufficient change in the detector’s (or the
observer’s) Bohmian configuration has taken place. This happens at about the instant when
the Bohmian position of the detected particle passes the detector. Why? Because the
‘empty’ partial waves, hitting the detector, indeed change the detector’s wavefunction, but
their dynamical relevance to the detector’s Bohmian position is negligible. Thus, according to
this picture, it should be the Bohmian arrival times which show up in time resolved detection
experiments.

Sections 2 and 3 summarize the basic facts about arrival time densities according to
Kijowski and Bohm. In section 4, we prove two theorems relating these two notions. The
moral of our study is distilled in section 5. A concise review of Bohmian mechanics can be
found in [10].
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2. Kijowski’s arrival time densities

In 1974 Kijowski [3] introduced a set of conceivable quantum mechanical arrival time
probability densities for a subspace of right moving wavefunctions. These densities are
parametrized by quadratic forms of a certain type. We shall describe them in what follows.

Definition 1. Let D be a complex vector space. A function q : D → R is called a quadratic
form, if there exists a Hermitian sesquilinear form S : D ×D → C such that q(φ) = S(φ, φ)

for all φ ∈ D.

Definition 2. Let D(R+) denote the space of test functions with compact support in
R+ :=]0,∞[ with the usual notion of convergence. Then

φ �→ φt with φt(k) = exp(−(ih̄k2t/2m))φ(k) for t ∈ R

gives the free Schrödinger time evolution. Let Q denote the set of all continuous quadratic
forms q : D(R+) → R such that for all φ ∈ D(R+) the following holds:

(i) q(φ) � 0,

(ii) q(φ) = q(φ),

(iii)
∫ ∞
−∞ q(φt ) dt = ‖φ‖2,

(iv) t2(q, φ) := ∫ ∞
−∞ t2q(φt ) dt < ∞.

For any q ∈ Q the non-negative function Dφ,q : R → R, t �→ q(φt ) yields a conceivable
arrival time density at x = 0 for the wavefunction φ ∈ D(R+) subject to ‖φ‖ = 1. The case
of arbitrary x ∈ R is obtained by replacing φ in Dφ,q with the function k �→ e−ikxφ(k).

According to (iv), for all q ∈ Q the second moment of the density Dφ,q is finite. Due to
the continuity of q also the first moment

t(q, φ) :=
∫ ∞

−∞
tq(φt ) dt

is finite. The variance of arrival times is given by V (q, φ) := t2(q, φ) − (t(q, φ))2. The
quadratic form q0 : D(R+) → R

q0(φ) := h̄

(2π)m

∣∣∣∣
∫ ∞

−∞

√
kφ(k) dk

∣∣∣∣
2

,

belongs to Q. The probability density Dφ,q0 is equal to the arrival time density derived from
the Aharonov–Bohm arrival time operator and it is distinguished by the following theorem.

Theorem 1 (uniqueness theorem). For all q ∈ Q and for all φ ∈ D(R+) with ‖φ‖ = 1 there
holds

(i) t(q0, φ) = t(q, φ) and

(ii) V (q0, φ)�V (q, φ).

Furthermore V (q, φ) = V (q0, φ) for all φ ∈ D(R+) with ‖φ‖ = 1 if and only if q = q0.

The proof of this theorem is to be found in [3].
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3. Bohmian arrival time density

Let x �→ �t(x) := 1/
√

2π
∫ ∞
−∞ exp(ikx)φt (k) dk denote the freely evolving configuration

space wavefunction at time t associated with the momentum space wavefunction φ ∈ D(R)\0.
Let Pφ(t) denote the probability measure of the set of this wavefunction’s Bohmian trajectories
which cross x = 0 at some time s ∈ ]−∞, t]. Again the arrival at arbitrary x ∈ R is obtained
by replacing φ in Pφ with the function k �→ e−ikxφ(k). (If we assume an ideal detector to
be placed at x = 0, then, according to Bohmian mechanics, Pφ(t) is equal to the detection
probability of that wavefunction at any time s ∈]−∞, t].) Let

Jx(φ) := h̄

2mi
(�(x)

∂

∂x
�(x) − �(x)

∂

∂x
�(x))

denote this wavefunction’s probability current at t = 0 and at position x. It follows that

J0(φ) = h̄

2m

{
1

(2π)

∫ ∞

−∞

∫ ∞

−∞
(k + l)φ(l)φ(k) dk dl

}
.

Then the following two theorems hold [9]:

Theorem 2. Let φ ∈ D(R) with ‖φ‖ = 1. Then for all t ∈ R

Pφ(t) = sup{fφ(s)| − ∞ < s � t} + sup{−fφ(s)| − ∞ < s � t} (1)

with

fφ(t) :=
∫ t

−∞
J0(φs) ds.

From the detection probability one can define in the usual way a conditional arrival time
probability density Bφ : R → R by

Pφ(t)

lims→∞ Pφ(s)
=

∫ t

−∞
Bφ(s) ds.

Theorem 3. For φ ∈ D(R) and ‖φ‖ = 1 the following holds:

Bφ(t) = ( lim
s→∞ Pφ(s))−1[J0(φt ) · χ(fφ(t) − sup

−∞<s�t

{fφ(s)})

− J0(φt ) · χ(−fφ(t) − sup
−∞<s�t

{−fφ(s)})] � 0. (2)

Here χ denotes the cutoff function

χ(s) =
{

0 for s �= 0

1 for s = 0.

The probability current may become negative, even for φ ∈ D(R+), a fact which is known
as the quantum backflow effect [11]. The cutoff function guarantees the non-negativity of the
probability density and prevents a multiple counting of trajectories.

From now on, we restrict ourselves to right moving states, i.e. wavefunctions φ ∈ D(R+)

with ‖φ‖ = 1. Due to the half-line localization of �t at x < 0 for t → −∞ and from
probability conservation we conclude that

fφ(t) :=
∫ t

−∞
J0(φs) ds =

∫ ∞

0
|�t(x)|2 dx. (3)
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From this it follows that 0 � fφ � 1. As limt→−∞ fφ(t) = 0, we have sup{−fφ(s)| − ∞ <

s � t} = 0 for all t ∈ R. Thus Pφ(t), according to equation (1), simplifies to

Pφ(t) = sup{fφ(s)| − ∞ < s � t}.
The half-line localization of �t at x > 0 for t → ∞ implies that 1 = limt→∞ fφ(t) =
limt→∞ Pφ(t). Therefore equation (2) simplifies to

Bφ(t) = J0(φt ) · χ(fφ(t) − sup
−∞<s�t

{fφ(s)}) � 0. (4)

4. Bohm versus Kijowski

In this section, we investigate the question whether the Bohmian arrival time density Bφ

belongs to the class of arrival time densities considered by Kijowski. This is the case if and
only if there exists a quadratic form q ∈ Q such that

Bφ(t) = q(φt )

for all φ ∈ D(R+) with ‖φ‖ = 1 and for all t ∈ R. The following theorem demonstrates that
the answer to the above question is no.

Theorem 4. There is no quadratic form q on D(R+) such that Bφ(0) = q(φ) for all φ ∈ D(R+)

with ‖φ‖ = 1.

Proof. Let ϕ ∈ D(R+) with ‖ϕ‖ = 1 such that Bϕ(0) > 0. A second unit vector ψ ∈ D(R+)

is chosen such that J0(ψ) < 0. Thus we have

fψ(0) =
∫ 0

−∞
J0(ψt ) dt < sup

−∞<s�0
{fψ(s)}.

From this then follows by means of equation (4)

Bψ(0) = J0(ψ) · χ(fψ(0) − sup
−∞<s�0

{fψ(s)}) = 0. (5)

Since φ �→ J0(φ) is a quadratic form its restriction to a two-dimensional(2D) subspace is
continuous. Thus the mapping

ξ �→ J0(cos(ξ)ϕ + sin(ξ)ψ) =: j (ξ)

is continuous on the interval [0, π/2]. Since j (π/2) = J0(ψ) < 0 there exists a number
η ∈ ]0, π/2[ such that j (ξ) < 0 for all ξ ∈ [η, π/2]. In consequence, the mapping

ξ �→ Bcos(ξ)ϕ+sin(ξ)ψ(0) =: β(ξ)

obeys β(0) = Bϕ(0) > 0 and β(ξ) = 0 for all ξ ∈ [η, π/2].
Assume now that there exists a quadratic form q ∈ D(R+) such that Bφ(0) = q(φ) for all

φ ∈ D(R+) with ‖φ‖ = 1. Let S denote the Hermitian sesquilinear form associated with q.
Then we have

β(ξ) = cos2(ξ)q(ϕ) + sin2(ξ)q(ψ) + sin(ξ) cos(ξ)2 Re(S(ϕ,ψ)). (6)

Since β(0) > 0, equation (6) implies

q(ϕ) > 0. (7)

Similarly β(π/2) = 0 implies q(ψ) = 0. Let ε ∈ ]η, π/2[. Then we have

0 = β(η)

cos2(η)
= q(ϕ) + 2 Re(S(ϕ,ψ)) tan(η)

and

0 = β(ε)

cos2(ε)
= q(ϕ) + 2 Re(S(ϕ,ψ)) tan(ε).
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Since ε �= η and tan : [0, π/2[ → R is injective we conclude from

2 Re(S(ϕ,ψ)) · tan(ε) = 2 Re(S(ϕ,ψ)) · tan(η)

that Re(S(ϕ,ψ)) = 0. Due to β(ε) = 0 we now have q(ϕ) = 0 in contradiction to q(ϕ) > 0
(see equation (7)). �

Now we compare the first moments of the probability densities Dφ,q according to Kijowski on
the one side, and Bφ according to Bohmian mechanics on the other side. As has been shown
in [3], for all q ∈ Q and for all φ ∈ D(R+) with ‖φ‖ = 1 the following holds:∫ ∞

−∞
tJ0(φt ) dt =

∫ ∞

−∞
tq(φt ) dt =: t(q, φ). (8)

In view of the backflow effect this is somewhat surprising. The following theorem relates the
first moments of Dφ,q and of Bφ . The first moment of latter density is denoted as

t(Bφ) :=
∫ ∞

−∞
tBφ(t) dt.

Theorem 5. Let φ be in D(R+) with ‖φ‖ = 1. Then t(q, φ) � t(Bφ) for all q ∈ Q. Equality
t(q, φ) = t(Bφ) holds if and only if J0(φt ) � 0 for all t ∈ R.

Proof. For φ ∈ D(R+) with ‖φ‖ = 1 and with J0(φt ) � 0 for all t ∈ R, the function fφ(t)

is non-decreasing. Therefore, according to equation (4), there holds J0(φt ) = Bφ(t) for all
t ∈ R. Thus from equation (8) we conclude that t(q, φ) = t(Bφ).

Assume now that φ ∈ D(R+) with ‖φ‖ = 1 and there exists a t ∈ R such that J0(φt ) < 0.
Then the open set


< := {t ∈ R|fφ(t) < sup
−∞<s�t

{fφ(s)}} ⊂ R

is non-empty. Note that for all t ∈ R\
< the equality fφ(t) = sup−∞<s�t {fφ(s)} holds. The
set 
< is a disjoint union of open intervals ]a, b[ such that fφ(a) = fφ(b). Then we have,
according to equation (8), that

t(q, φ) =
∫

R\
<

tJ0(φt ) dt +
∫


<

tJ0(φt ) dt. (9)

Equation (4) implies that

Bφ(t) =
{

0 for all t ∈ 
<

J0(φt ) for all t ∈ R\
<.

From this and from equation (9) we infer that

t(q, φ) =
∫

R\
<

tBφ(t) dt +
∫


<

tJ0(φt ) dt = t(Bφ) +
∫


<

tJ0(φt ) dt.

The latter integral over 
< is a sum of integrals over disjoint intervals ]a, b[. Denote

F(t) = fφ(t) − fφ(a) =
∫ t

a

J0(φs) ds

then it holds that F ′(t) = J0(φt ) and F(t) < 0 for all t ∈ ]a, b[ and F(a) = F(b) = 0. With
this each of the integrals can be estimated by means of a partial integration as follows:∫ b

a

tJ0(φt ) dt =
∫ b

a

tF ′(t) dt = tF (t)|ba −
∫ b

a

F (t) dt = −
∫ b

a

F (t) dt > 0.

Thus for wavefunctions with backflow we have t(q, φ) − t(Bφ) = − ∫

<

F (t) dt > 0. �

In a completely analogous way one can show for φ ∈ D(R−) that t(q, φ) � t(Bφ); see [12].
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5. Conclusion

Now, as the Bohmian arrival time density, associated with a wavefunction φ ∈ D(R+), does not
belong to the set of arrival time densities introduced by Kijowski, one may wonder how deep
this discrepancy goes. Indeed, as is obvious from our proof of theorem (4), the arrival time
density Bφ violates the quadratic form structure, which is considered as one of the basic rules
of standard quantum mechanics. To recall this point, we have seen that for some ϕ,ψ ∈ D(R+)

with ‖ϕ‖ = ‖ψ‖ = 1 the Bohmian arrival time density obeys

Bcos(ξ)ϕ+sin(ξ)ψ(0) �= a + b cos(2ξ) + c sin(2ξ)

for any choice of the constants a, b, c ∈ R. This fact also contradicts that version of Bohmian
mechanics which is empirically equivalent to standard quantum mechanics. The essence of that
version is expressed most succinctly in proposition (2) of [10]. It is crucial for this proposition
that the random variables on the configuration space, which are averaged over with the position
density, are not allowed to depend on the wavefunction. The definition of the Bohmian arrival
time density Bφ , however, makes use of a random variable, which parametrically depends on
the wavefunction φ. Thus assuming that Bφ is observable implicitly generalizes the standard
rules of how to model experiments and might lead to an empirical discrimination between
Bohmian mechanics and standard quantum theory.
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